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Abstract
We consider shared workspace scenarios with humans and robots acting to achieve independent goals, termed as parallel
play. We model these as general-sum games and construct a framework that utilizes the Nash equilibrium solution concept
to consider the interactive effect of both agents while planning. We find multiple Pareto-optimal equilibria in these tasks. We
hypothesize that people act by choosing an equilibrium based on social norms and their personalities. To enable coordination,
we infer the equilibrium online using a probabilistic model that includes these two factors and use it to select the robot’s action.
We apply our approach to a close-proximity pick-and-place task involving a robot and a simulated human with three potential
behaviors—defensive, selfish, and norm-following.We showed that using aBayesian approach to infer the equilibrium enables
the robot to complete the task with less than half the number of collisions while also reducing the task execution time as
compared to the best baseline.We also performed a study with human participants interacting either with other humans or with
different robot agents and observed that our proposed approach performs similar to human-human parallel play interactions.

Keywords Human–Robot interaction · Parallel play · Multi-agent systems · Game theory · Cooperative AI

1 Introduction

People often perform activities in shared spaces with other
people achieving their own individual goals. This includes
driving to work while sharing the road with other cars, navi-
gating aroundother shopperswhenpushing a cart in a grocery
store, and sharing counter-space and utensils in a kitchen.
Although these situations are neither purely collaborative nor
competitive, the actions of other participants have bearing on
each person’s own success or failure. We refer to these activ-
ities as parallel play, related to its psychology namesake that
refers to activities in early social development, where chil-
dren playbesides instead ofwith, other children (Parten 1932;
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Park and Howard 2010). In the Human-Robot Interaction
(HRI) context, we define parallel play to refer to those activ-
ities where people and robots have separate individual goals
but interact due to shared space. We aim to derive a frame-
work that helps a robot plan effectively for parallel play with
human participants, and apply it to a close-proximity pick-
and-place scenario between a robot and a human.

Planning a robot’s action in HRI usually involves consid-
ering the robot’s goals as well as predictions of future human
actions (Sadigh et al. 2016a; Bansal et al. 2018; Koppula
and Saxena 2015). When working with others, people are
often considerate of their intents and beliefs due to Theory-
of-Mind (Premack and Woodruff 1978; Engel et al. 2014),
and so, the human’s action is influenced by their predicted
plans of the other participant’s, including the robot. Model-
ing this cyclical-dependence, of the human’s predicted plan
on the robot’s and vice-versa, is important for accurately rep-
resenting the interaction dynamics in HRI.

Game Theory provides us tools to model this inter-
dependence of rational interacting agents. A (pure) Nash
equilibrium (NE) is a set of actions, one for each agent in
the game, which is optimal, assuming the actions of oth-
ers remain fixed (Leyton-Brown and Shoham 2008). A Nash
equilibrium implicitly captures the interdependence between
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Fig. 1 Overview. Our approach has three main stages. a In the planning stage, we sample goal-reaching trajectories for both agents and compute
their costs and use it to find the Nash equilibria (NE). b In the inference stage, we compute the probability for each equilibrium based on its
adherence to the social norm, as well as the inferred personality of the other agent. We select the most-likely equilibrium under this distribution
and partially execute the action. In c, we observe the states of both agents, infer the personality and start replanning. This process repeats until the
agent has reached its goal

agents, and our approach plans by finding equilibria strate-
gies to enable better coordination.

Although humans have been shown to play to Nash equi-
librium (Mailath 1998), we find that multiple equilibria can
exist in a game and it is not clear how the robot should choose
between them. Figure 1 shows an example of two equilibria
in a pick-and-place scenario, where each favors a different
agent by allowing them to reach their goal first. A collision
is likely if both agents choose an equilibrium that favors
them, highlighting the importance of coordination. Humans
can coordinate social behavior in non-competitive games by
learning and following social norms (Ho et al. 2016). Here,
a norm refers to a set of abstract instructions that agents fol-
low, and expect others to follow. In Fig. 1, a normmight favor
solutions that allow the agent closer to their goal to reach for
it first and, if followed by both agents, would lead to coor-
dination. However, sometimes agents can ignore the norm
in favor of their personal preferences. For example, a selfish
agent might ignore the norm and expect the other to always
yield to themwhen reaching for an object. Coordinating with
such agents requires the ability to infer this preference from
experience.

We design a framework that finds Nash equilibria for par-
allel play tasks; it models the strategy for choosing equilibria
as a distribution composed of two aspects—(1) a domain-
specific social norm, designed by an expert apriori and (2) an
agent-specific individual preference, inferred online during
the interaction. We hypothesize that this framework would
lead to better coordination with humans in performing in
such tasks, due to its modeling of the decision-making cou-
pling between agents, as well as, its combination of expert
knowledge with online adaptation. To validate, we apply
this to a close-proximity pick-and-place task, designed to
be similar to HRI tasks used to study team coordination and
fluency (Gabler et al. 2017; Mainprice et al. 2016) with a

simulated human. Our results show that this framework is
able to shorten task execution time while also reducing the
number of human collisions by half as compared to the best
baseline when interacting with a simulated human with 3
potential personalities.

We make the following contributions:

1. Introduce a novel framework thatmodels norm-following
social behavior and personality-based likelihood infer-
ence to interactive-planning with humans in parallel play
activities. We do this by first computing the Nash equi-
libria and then using this framework to find a distribution
over them.

2. Design task and metrics to benchmark the performance
of interactive-planning algorithms for parallel play. This
includes 3 baselines for simulating distinct human per-
sonalities that have similarity to human performance of
the task, which enables testing adaptability of the algo-
rithms to different human behavior.

2 Cost formulation for interaction

In this section we describe a formulation of the cost func-
tion for multi-agent scenarios and define different interaction
types based on the parameterization of this cost. The goal is
to help illustrate the difference between them based on agent
objectives and interaction dynamics. Table 1 briefly lists the
interaction types.

We define an interaction as a game between multiple
agents. Each agent i minimizes its cost ci ,

ci (si , s−i ) = αcinative(si ) + (1 − α)ciinteractive(si , s−i ). (1)
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Table 1 Interaction paradigms

Interaction Description Examples

Independent play Agent is not influenced by other
agents

Classic Atari games and board
games (Brockman et al. 2016), classic
control problems (e.g.inverted
pendulum Barto et al. 1983)

Competitive play Agent goals are in direct conflict
leading to competition

Backgammon (Tesauro 1995), Go (Silver
et al. 2016), or drone racing (Spica et al.
2020)

Collaborative play Agents share the same goals and
costs

Simulated driving (Bansal et al. 2018),
cooperative games (Carroll et al. 2019),
table-top manipulation (Nikolaidis et al.
2017)

Parallel Play Agents have separate goals but
shared space leads to conflict in
achieving them.

Manipulation (Gabler et al. 2017),
navigation (Sadigh et al. 2016a;
Turnwald and Wollherr 2019)

Here, si is the state of agent i , s−i refers to the states
of the other agents, and cnative and cinteractive refer to the
cost derived by the agent’s own state and by its relation to
other agents, respectively. The cost for an agent is a linear
combination of an individual component, which focuses on
success in the individual task, as well as a social component,
which considers the mutual effects of actions of other agents
in the environment. Now, we consider a few different types
of interaction.

2.1 Independent play

Werefer to scenarioswhere an agent’s success depends solely
upon their own actions, and not those of other agents, as
independent play. Such agents are unaffected by the agents.
Therefore, they only minimize the native cost from Eq. 1,
i.e.,

α = 1, ci (si , s−i ) = cinative(si ). (2)

Any task involving only a single agent is an example of
independent play. This also includes scenarios where agent
influence is limited to itself, e.g., driving on a road with only
one car occupying a lane and barriers between lanes.

2.2 Competitive play

In competitive play scenarios, the success of an agent
depends on the failure of the other agents. Examples of com-
petitive play includes games like chess, Go or a race. Since
the cost for an agent depends upon the state all agents are in,
so, it will only include the interactive cost. Thus,

α = 0, ci (si , s−i ) = ciinteractive(si , s−i ). (3)

For two-agent zero-sum games, cinteractive will be the
inverse for the two agents,

c0interactive(s0, s1) = −c1interactive(s1, s0) (4)

2.3 Collaborative play

In a collaboration the payoff usually depends upon the states
of both agents as well, i.e., cinteractive and thus, α = 0 again.
However, unlike the competitive scenario, this cost will be
the same for all agents.

α = 0, ciinteractive(si , s−i ) = c jinteractive(si , s−i ) ∀ j . (5)

Examples of collaborative, shared-reward tasks include
robots assisting humans in parts assembly, or robot teleoper-
ation, etc. .

2.4 Parallel play

We define human-robot interaction scenarios that involve
agentswith separate goals but shared space as parallel play. In
such scenarios, both native and interactive rewards play a role
since agents have separate individual goals (cnative) but also
aim to avoid interference, usually in the form of collision-
avoidance, with the other agents (cinteractive). Hence, α in
Eq. 1 is not a fixed value and depends on the scenario,

α ∈ (0, 1). (6)

Next, we identify some scenarios from previous work that
fit our definition of parallel play.
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2.4.1 Example: Close-proximity manipulation

Gabler et al. (2017) perform table-top manipulation in a
close-proximity Human-Robot team, with the aim of per-
forming this task efficiently by avoiding mutual interference.
Although they introduce this as a collaboration, their model
has separate costs for each agent. This is not the shared cost
that characterizes collaborative play according to our defini-
tion. The cost of each action is determined by the following,

ci = cinative + ciinteractive. (7)

Their cost function fits our formulation from Eq. 1 with
α = 0.5.They compute theNash equilibria to plan the robot’s
actions.

2.4.2 Example: Navigation

Sadigh et al. (2016a) introduce an approach to plan actions
for the simulated autonomous cars based on the effect it will
have on the human drivers. They used Inverse Reinforcement
Learning tomodel the human’s reward anddefined the robot’s
reward separately. Their reward functions include a linear
combination of native costs, to incentivize lane driving, and
interactive costs, to discourage collisions. These functions
also fit our parallel play formulation with α ∈ (0, 1).

3 Related work

There has been extensive work in HRI for planning a
robot to work on tasks around humans in domains like
parts assembly (Hawkins et al. 2014; Gabler et al. 2017),
motion planning, and autonomous driving (Sadigh et al.
2016a; Bansal et al. 2018). Planning around people gener-
ally involves two aspects, predicting the human’s behavior
and finding robot actions that achieve its goal in the presence
of the human.

Human modeling Prior work has emphasized accurately
modeling the human’s rational goal-driven behavior. This
includes learning human preferences to predict low-level
trajectories through a reward function obtained by inverse
reinforcement learning (Ziebart et al. 2009; Sadigh et al.
2016a). It also includesmethods focused on predicting action
timing using apriori task-structure knowledge, e.g. parts
delivery (Hawkins et al. 2014; Gombolay et al. 2015). Some
of these models were also designed to be adaptable to the
preferences of the particular human with whom the robot
was interacting (Nikolaidis et al. 2015).

Human adaptive planning A common approach to plan-
ning is by first predicting the human’s behavior and then
finding a best-response to the predicted behavior. This
approachworks verywell in scenarios where the robot shares

the human’s utility (collaborative play) and assumes an assis-
tive role. For instance, in parts delivery (Hawkins et al. 2014;
Unhelkar et al. 2014), where the robot intends to avoid inter-
actions by keeping out-of-the-way while ensuring that the
human doesn’t wait. In close-proximity manipulation tasks,
it has been used to plan robot trajectories that did not intersect
with predicted human plans (Mainprice et al. 2016; Li and
Shah 2019). An inherent assumption here is that, although
the human’s plan depends on the situation, the prediction is
independent of the robot’s plan. So, in situations where the
agents have separate utilities, like in parallel play, the robot
will choose overly conservative behaviors which can lead
it to freeze when trying to navigate crowds (Trautman and
Krause 2010) or fail to merge in traffic (Sadigh et al. 2016a).

Mutually adaptive planning Recent work has addressed
this by considering thehuman’s influence-ability aswell (Turn-
wald and Wollherr 2019; Sadigh et al. 2016a; Fisac et al.
2019). Their model includes both the influence of the human
and their goals on the robot, as well as the influence of
the robot on the human. Similar to us, they also utilize
game-theoretic tools to model this cyclical influence. Turn-
wald and Wollherr (2019) modeled robot navigation as a
dynamic general-sum game and computed a Nash equilib-
rium to effectively plan the robot’s trajectory among a crowd
of pedestrians. Sadigh et al. (2016a) modeled driving as
a Stackelberg game where the robot planned first and the
human planned in response; they showed that this model can
successfully influence human behavior in simulated driving
tasks. Fisac et al. (2019) extended this to longer time horizons
by computing a Nash equilibrium for high-level actions and
optimizing low-level trajectories for executing them. Gabler
et al. (2017) utilized the Nash equilibrium to find an order
for object pick-up in a close-proximity pick-and-place task
similar to ours; they found that considering the mutual adap-
tation allowed their framework to improve safety as well
as human subjective preference. Our approach also uses the
Nash equilibrium to plan goal-driven actions for the robot
that consider themutual adaptability between the two agents.
However, our approach includes a strategy for selecting an
equilibrium in case multiple are present, while others either
have not mentioned this strategy (Gabler et al. 2017) or only
find one equilibrium due to their problem structure (Sadigh
et al. 2016a; Fisac et al. 2019).

Online model inference Although different people can
perform the same task in multiple ways, past work gener-
ally modeled the behavior of users with only a single mode.
In recent years, techniques to infer aspects of the behavior
of the person or people that they are interacting with have
been developed, we discuss some instances next. Nikolaidis
et al. (2015) cluster human behavior into different types and
predict their actions based on the inferred type. Nikolaidis
et al. (2016) groups people by their adaptability to the robot’s
actions to decide the plan for the robot. Chen et al. (2018)
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explicitly model human trust on the robot’s ability during
decision-making and infer this parameter during the interac-
tion. Sadigh et al. (2016b) use information-gathering actions
to inferwhether a human driver is attentive or not, and use this
to guide the robot’s decision-making.We define a latent vari-
able that represents human personality and infers this online,
for each participant, in order to coordinate better with them.
Recently, Schwarting et al. (2019) proposed a method for
simulated autonomous driving around human drivers using
Nash equilibrium. They also use a single parameter to rep-
resent human-personality and perform inference to find it.
However, in their model, this parameter is part of the human
cost function while we use it to choose between Nash equi-
libria. Also, they define a continuous action-space and use a
local approximation for computing Nash equilibrium, which
finds a single equilibrium. Their results indicate that inferring
human preference in combination with finding Nash equi-
librium improves prediction and helps achieve coordination
with humans.

Coordination The importance of coordinating with a
human in non-competitive games was highlighted by Carroll
et al. (2019)where they learn humanmodels and used them to
train reinforcement learning agents that achieve performance
superior to self-play. Also, Ho et al. (2016) proposed using
social norms for improving coordination in multi-agent envi-
ronments. Peters et al. (2020) used particle filtering to align
autonomous cars to a single Nash equilibrium solution in an
intersection navigation taskwhich admitsmultiple equilibria.

Although, no standard metrics exist in collaborative HRI
tasks to measure individual and team performance. Hoff-
man (2019) provides a guide for common metrics used to
evaluate team fluency. This includes task completion time for
every agent, total task time, the ratio of the time the human
spent idle. While parallel play is not purely collaborative, we
believe these metrics still capture important aspects of the
interaction that we would like to measure and we will use
these for evaluations. However, it should be noted that the
utility of a metric depends on the task and stakeholder goals.

4 Interactive planning as a game

We model the multi-agent interactive planning task as
a non-cooperative game represented as tuple G, G =
(P, A, c) (Leyton-Brown and Shoham 2008). Here, P =
{P1, . . . , PN } is a finite set of N players, A = A1×· · ·× AN

where Ai is the set of actions available to player i . We refer
to the set of concurrent actions, one for each agent, as an
action profile, a, a = (a1, . . . , aN ). We define a cost repre-
senting the unfavorability of an action profile for agent i as
ci : A �→ R and c = (c1, . . . , cN ) includes the mapping for
all agents.

In our scenario, each agent p is a robot arm, each action
set Ap is a set of goal-driven trajectories, each trajectory is
a sequence of joint-space positions and velocities sampled
using a planner, and the cost ci (a) encourages each robot
to minimize task completion time while avoiding collisions
with other agents. The goal for an agent i is to take an action
ai ∈ Ai in profile a, which minimizes its cost. However, its
cost depends upon the actions chosen by the other agents
in the profile a. We assume that all agents are rational and
have Theory-of-Mind, i.e., they choose actions to minimize
their own cost and are aware of the states and goals of the
other agents. These assumptions allow us to utilize the Nash
Equilibrium (NE) solution concept for this game. An action
profile is a NE, for a single-stage game, if no agent has an
incentive to choose a different action for themselves given
that all the other actions are fixed.

a∗
i ∈ argmin

ai
ci (a

∗
1 , ., ai , ., a

∗
N ) ∀i ∈ N . (8)

Although generally, only one (mixed) equilibrium is guar-
anteed to exist for a game (Leyton-Brown andShoham2008),
in our problem, one pure equilibrium is always present and
wefind thatmultiple equilibria are frequently present. For the
planning agent, some of these equilibria can be eliminated
for being Pareto-sub-optimal, i.e., worse for all agents. For
example, Nash profile, a*1 Pareto-dominates a profile a*2,
if ci (a*1) < ci (a*2)∀i ∈ N . Next, we present an approach
that can help the agent select an action by choosing between
Pareto-optimal equilibria.

5 Equilibrium selection strategy

Our strategy chooses between equilibria using two aspects
of human social behavior, norm-following and personality-
adaptation. We model the distribution over equilibria as a
product of its probability under the norm, pn and its proba-
bility given the predisposed personality, pα ,

p(a) = pn(a)pα(a). (9)

Here, and in the rest of this section, a refers to a NE action
profile. Next, we explain the norm for this problem and how
we use observations to update the personality distribution.

5.1 Norm

Similar to Ho et al. (2016), we define a norm to be a set of,
situation-dependent, abstract, instructions that agents follow
with the expectation that others will follow them as well.
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They help agents coordinate in the absence of prior knowl-
edge of the agents they are interacting with. For example, a
first-come-first-leave normcan help decide howcars navigate
a four-way stop. Here, we model it as a probability distri-
bution over NE. Different games will have different norms
and the choice of a norm should be based on expert knowl-
edge or learned from data. For our problem, we use a simple
min-norm, that prioritizes the equilibrium which achieves
minimum cost for any of the agents,

pn(a) ∝ e−λnmini (ci (a)), (10)

where λn is a parameter of the exponential distribution that
we set. This norm encourages the agent with the shortest
unobstructed path to its goal to act first.

5.2 Online preference estimation

Although norms can help in coordination, people sometimes
have strong preferences that guide them towards certain equi-
libria regardless of the norms. For example, an aggressive
driver may decide to cross an intersection first, despite the
norm, expecting the other drivers to adapt their strategy. We
model this as a distribution over equilibria, inferred at time
t using the history Ht of the past interaction,

ptα(a) = p(a|Ht ). (11)

Here, Ht refers to the history of the interaction, i.e., Ht =
{({s0i∈N }), . . . , ({st−1

i∈N })}, and sti is the state of agent i at time
t . We set it to the uniform distribution at the start,

pt=0
α (a) = uniform(a) ∀a. (12)

We define an exponential distribution on the distance
between a past trajectory, H , to an action profile, a, as,

p(a0|H) ∝ e−λα fdist (a0,H). (13)

Here, fdist (a, H) is defined as the Euclidean distance
between the sequence of states in H to those in a and λα is
a parameter of the exponential distribution. From Eq. 13, we
know p(a0|Ht ), however, we would like to find p(at |Ht ).
For this, we first define a latent variable θ . θ refers to the
intrinsic personality of an agent and so is assumed to remain
constant for every agent during the interaction. Now, we
derive p(at |Ht ) by using the personality, θ , as follows,

p(at |Ht ) =
∑

θ

p(at , θ |Ht ),

p(at |Ht ) =
∑

θ

p(θ |Ht )p(at |θ, Ht ).

We assume that the personality, θ , encodes all of the infor-
mation required for predicting the agent’s next action, which
makes at conditionally independent of Ht given θ . So,

p(at |Ht ) =
∑

θ

p(θ |Ht )p(at |θ). (14)

We define θ such that each action profile a that belongs to
a personality is equally likely to be chosen,

p(a|θ) = 1θ (a)∑
a′ 1θ (a′)

. (15)

Next, we find p(θ |Ht ) by taking its joint distribution with
a0 and marginalizing it out,

p(θ |Ht ) =
∑

a0

p(θ, a0|Ht ),

p(θ |Ht ) =
∑

a0

p(a0|Ht )p(θ |a0, Ht ).

From the conditional independence between θ and Ht

given a0, we get,

p(θ |Ht ) =
∑

a0

p(a0|Ht )p(θ |a0). (16)

Since we assume a uniform prior on θ , p(θ) is a constant.
Combining with Eq. 15, we get,

p(θ |a0) = p(θ)p(a0|θ)

p(θ)
∑

θ ′ p(a0|θ ′)
= p(a0|θ)∑

θ ′ p(a0|θ ′)
(17)

We use p(θ |a0) and p(a0|Ht ) (Eq. 13) to get p(θ |Ht ) in
Eq. 16. This allows us to find p(at |Ht ) from Eq. 16 by using
p(at |θ) from Eq. 15, which gives us pα(at ) in Eq. 11

6 Pick-place task

The pick-and-place task involves two 2-dof articulated arms
moving on a 2D surface with the goal to pick up their des-
ignated object, by moving their end-effector close to it for
grasping, and placing it, by bringing the grasped object to the
destination area. The scenario is depicted in Fig. 2, where the
arm with a red base was controlled by our approach, and the
other one was either simulated as a human or controlled by
a human. Henceforth, the former will be referred to as the
robot and the latter as the human.

6.1 Action planning

To plan for this task, we first sample k−1 plans for each agent
in configuration space using a Rapidly-exploring Random
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Fig. 2 Task setup

Fig. 3 Framework. We first plan trajectories, then use the cost to com-
pute all Pareto-optimal Nash equilibria, then combine the norm and
inferred-personality distributions to select the most likely equilibrium.
This action is partially executed before repeating thewhole process until
the task completes

Tree (RRT) (Lavalle 1998) and add a static plan where the
agent does not move, Ai = {τ j∈k}. We use them to generate
an action set by taking the outer product of the trajectories
for each agent, A = A1 × · · · × AN . We compute a cost for
each action profile by simulating it and use Eq. 8 to find the
Nash equilibria. We choose the NE profile a that maximizes
the distribution p(a) from Eq. 9, and select the agent’s action
froma. This action, alongwith the action taken by the human,
is executed until a collision is detected or if the time before
replanning is reached. After this, we update the history Ht

and replan. This process continues until the robot completes
the task and is depicted in Fig. 3.

6.2 Task costs

We define a simple cost function that encourages the robot
to complete the task quickly and avoid collisions. The cost
of an action profile, a = (aR, aH ), where aR , aH , are the
robot and human actions respectively, is the trajectory dura-
tion if it is successful in reaching the goal and infinity if it
leads to a collision. We sample goal-reaching trajectories for
each agent that are independent of the goal and state of other
agents. We assume that the human is also goal-driven and
collision-avoidant and so assume an analogous cost func-
tion where their cost depends on the human task completion
time. Under these conditions, one pure Nash equilibrium is
guaranteed as long as there exists a trajectory for the robot
to reach the goal. For instance, say that we select an action
profile with the robot’s action being the shortest trajectory to
its goal and the human’s action as the shortest trajectory that
does not collide with the robot’s plan (including the static
action). This profile will be a Nash equilibrium since neither
agent has an incentive to modify their actions. For the robot,
the action is optimal, and, for the human, this action is opti-
mal assuming the robot’s action as fixed due to the infinite
cost of a collision.

6.3 Time complexity

Our approach described in Fig. 3 includes five main com-
ponents. The first one is trajectory sampling which has a
time complexity of O(NktRRT ), where k is the number of
trajectories sampled per agent, N is the number of agents,
and tRRT is the time that it takes to plan a single trajectory.
The second component includes generating action profiles
and computing the cost associated with each of them, this
takes O(kN T ) time, where T is the number of time-steps
in each trajectory. The next component finds the Nash equi-
libria and takes O(kN ) time. The last component computes
the distribution over Nash equilibria and also takes O(kN )

time. So, the second component dominates and the total time
complexity of our approach is O(kN T ).1

6.4 Baselines

We define three baselines to compare with our approach.

1. Defensive. The robot chooses an action assuming that
the human wants to maximize the robot’s cost while
still achieving its goal leading to a maximin formulation.
Thus, the agent will act defensively by preferring actions
that do not lead to collision with the sampled human tra-
jectories and will often lead it to wait for the human to

1 This analysis assumes a parameterization of the RRT algorithm such
that it completes in a reasonable amount of time.
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complete their task.

aR = argmin
aR∈AR

maxaH∈AH cR(aR, aH ). (18)

2. Selfish. Chooses an equilibrium profile that minimizes
the robot’s cost. This strategy selects a trajectory that
reaches the goal as quickly as possible assuming the other
agent avoids collision.

aR ∈ a*, a* = argmin
a*

cR(a*). (19)

3. Norm-Nash. Chooses an equilibrium profile that maxi-
mizes the norm distribution pn from Eq. 10. This leads to
behavior that encourages the agent closer to their goal to
reach themfirst.While the first twowill lead to somewhat
fixed behaviors, this strategy adapts to goal-achievability,
which varies across tasks and also in state evolution
within the same interaction.

aR ∈ a*, a* = argmax
a*

pn(a*). (20)

6.5 Implementation details

A 3D simulation environment was created using the open-
source Open Robotics Automation Virtual Environment
(OpenRAVE) (Diankov 2010) with a time step of 0.1
seconds. The action-set, Ai was sampled using an RRT plan-
ner from the open-source Open Motion Planning Library
(OMPL) (Sucan et al. 2012). We sampled k = 8 plans
for each agent when planning and compute the cost as an
k × k table by simulating the actions using OpenRAVE with
a time-step of 0.8; we increased the time-step here to allow
for fast computation of the nash solutions. Parameter λn of
the norm distribution (Eq. 10) was set to 50. We set two per-
sonality types and use a binary latent variable θ = {0, 1}.
θ = 0 selects equilibrium profiles a that favor agent 1,
c1(a) < c2(a), and θ = 1 selects equilibrium profiles a
that favor agent 2, c2(a) < c1(a). We set λα = 10 in the
personality distribution (Eq. 13).

7 Simulated human study

We simulate human behavior to create a controlled setting
for our first experiment.

7.1 Simulated human

We defined three human behaviors using the baselines: (1)
Defensive, (2) Selfish-Nash, and (3) Norm-Nash. We chose

the first two behaviors because of their clear intuitive dis-
tinctness and combine it with the third in accordance with
our expectation that people also follow social norms.

7.2 Metrics

We measured the following task performance metrics: total
task completion time and task time for each agent; we also
counted safety stops, which are the number of times the sim-
ulation stopped the agents to avoid an impending collision.
To keep these measures independent, we did not have any
time penalty for a safety stop.

7.3 Results

To test how each algorithm fares with the different behav-
iors, we randomly pair the robot with one of these simulated
human behaviors with random object locations for 30 trials.
The averagedmetrics for the three baselines and our proposed
approach, Bayes–Nash, are presented in Fig. 5. As expected,
the Defensive robot was the safest, but its safe behavior also
caused the highest robot and total task completion times. The
Selfish-Nashwas significantly faster than theDefensive robot
but also led to the highest safety stops. Both Norm-Nash and
Bayes–Nash performed comparably in time to Selfish-Nash
but the Bayes–Nash was marginally faster. They were both
significantly safer than Selfish-Nash and Bayes–Nash also
had the fewest safety stops of the two.

7.4 Analysis

These results illustrate the trade-off between safety and
efficiency present in the task, where the Defensive and
Selfish-Nash agents sit at opposite extremes. Norm-Nash and
Bayes–Nash are able to better trade-off these metrics due to
their capability to adapt to the situation and the (simulated)
human, respectively. Next, we perform an experiment to val-
idate this trade-off in human interaction.

7.5 Qualitative results

Figure 4 shows end-effector trajectories that lead to Nash
equilibrium in this task. It shows all the pareto-optimal
equilibria found in three different goal object location con-
figurations. We find between one and three equilibria in each
configuration with different costs for the two agents. These
differences in equilibria are caused due to the relative loca-
tion of the objects as well as the stochasticity of the planner.
For instance, the higher relative difference between c1 and c2
in configuration 3 as compared to 2 can be attributed to the
objects being closer to the respective robots in configuration
2. Optimal plans for one agent in configuration 2 thus do not
disadvantage the other agent asmuch as in goal configuration
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Fig. 5 Results from the experiment involving a simulated human. Note
that our proposed approach, Bayes–Nash, is safer than all the non-
defensive baselines and similar in task completion time to the Selfish-
Nash baseline. Error bars represent standard error of the mean (SEM)

3. Also note that these equilibria were computed when the
robots were in their initial states and the equilibria found will
change as the task progresses and agents move to different
states.

8 Human–human study

To investigate the natural interaction between two people,
we recruited 4 male students aged 28–32 from our univer-
sity campus to perform the same task, in a pilot experiment,
where both interacting agents were human and controlled the
simulated robot arm using a gamepad controller.

8.1 Experiment design

We kept one of the human agents fixed throughout the exper-
iment and will refer to them as control. The other agent
(participant) evoked different behaviors in each experiment
and performed 3 trials with the control. In the first trial,
the participant was asked to behave naturally, by trying to
increase efficiency while reducing task time. For the other
two trials, the participant chose either (1) Selfish - complet-
ing this task efficiently or (2) Defensive - avoiding collisions
with the other arm strategy. The control kept the same natural
strategy throughout the interactions and was not made aware
of the strategy that the participant was employing. Also, no
verbal communication was allowed during the experiment.
We measured the same metrics as in the simulated human
experiment.

8.2 Results

Figure 6a shows that the total task completion times for the
Selfish and Defensive humans are similar when interacting

(b)

(a)

Fig. 6 a Plots the interaction taskmetrics for the naturally acting human
in the presence of either a selfish or defensive participant in the human-
human study; b The samemetrics but for the interaction of Bayes–Nash
with the simulated human. The similarity in the relative trends across
a and b highlight the similarity of Bayes–Nash to a real human agent.
Error bars represent SEM

with a naturally-acting human. However, in terms of their
individual task completion times, the Defensive agent takes
significantly longer as compared to the Selfish agent. The
Selfish human also triggers more safety stops but the safety
stops in this study were much less than in simulation. In
Fig. 6b we show the simulated Defensive and Selfish-Nash
behaviors when interacting with Bayes–Nash. We find simi-
lar comparative trends between behavior types for both task
completion times and safety stops. However, the robot in (b)
completes the task more quickly since the arm is allowed
higher velocities in simulation.

8.3 Analysis

These results indicate that a naturally-acting human adapts
well to both Selfish and Defensive behavior due to similar
task metrics for both conditions, as shown in Fig. 6a. Similar
trends for Bayes–Nash, Fig. 6b, indicate that it also adapts
well to different strategies. The similarity between trends
among personalities across experiments validate our interac-
tive task design and metrics to benchmark performance for
parallel play. Also, since the latent variable used to param-
eterize the equilibrium was designed to capture the agent’s
favorability in equilibria and not the specific behaviors of
the baselines, we expect that Bayes–Nash to be able to adapt
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Goal configura�on 1 Goal configura�on 2

Goal configura�on 3

= 0.45, = 0.82
= 0.59, = 0.44 = 0.41, = 0.57

= 0.54, = 1.3 = 0.54, = 1.3 = 1.1, = 0.69

Fig. 4 Nash Equilibrium trajectories for different goal configurations. Goal configuration 1 has a single equilibrium. In the plot, the green rectangle
represents the table and the end-effector trajectories for the two robots (P1, P2) are shown with the dots being sampled at equal time-intervals to
show the speed of the arm during the trajectory. The costs for the trajectories are shown under each plot, where c1, c2 refer to those for P1, P2
respectively. In goal configuration 2 we find two equilibria, one favoring each agent, while goal configuration 3 has three equilibria where 2 of them
are more favorable for P1

well to real human participants. This leads to the following
two hypotheses for a human-robot interaction study:

H1: A robot using Bayes–Nash will have significantly
fewer collisions than a robot using a Selfish-Nash planner.

H2: A robot using Bayes–Nash will have faster task com-
pletion time than a robot using a Defensive planner.

9 Human–robot study

We test these hypotheses in a pilot experiment by pairing
human participants with a robot controlled by our algorithm
and the baselines.

9.1 Experimental design

In order to validate the proposed approach, we design a
within-subject human study.We examined the effects of three
planning algorithms on their interaction with a human user
and counter-balanced their order. Participants were asked to
control a robot arm in simulation using a gamepad controller,
as shown in Fig. 7. The gamepad controller allows users to
move the robot arm in eight different directions at 10 Hz.
We used the same manipulation task as the previous two
experiments, including keeping the object locations the same.

Fig. 7 A user controlling the robot arm during the Human–Robot study

Participants were informed that they might interact with dif-
ferent robots but not what these types were. There were three
rounds of the task and each round involved six trials. In each
round, the robot used one of the following conditions: (1)
Defensive, (2) Selfish-Nash, and (3) Bayes–Nash. We used
the same metrics as before.
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Fig. 8 Human–Robot Study. Defensive and Selfish are baselines,
Bayes–Nash is our approach and the Natural agent refers to the human–
human study results where the participants acted naturally. Error bars
represent SEM

9.2 Procedure

After giving informed consent, participants went through an
overview of the experimental procedures. The study started
with a pre-survey to collect demographic information. Then
participants entered a practice session to familiarize them-
selves with the user interface and the gamepad controller.
The purpose of this session was to erase potential novelty
effects caused by the robot and the user interface. The prac-
tice round ended when the participants indicated they felt
comfortable with the control and overall task. Then the par-
ticipants went through three rounds of ‘pick-and-place tasks’
with the robot. Each round consisted of 6 trials and partici-
pants were asked to fill out a short survey after the last trial.
After these three rounds, the participants were given a post-
survey with open-ended questions about their experience.

9.3 Results

A total of 6 students aged 25–29 (M = 27.8, SD = 1.3, 5
male) were recruited from our university and were randomly
assigned to one possible order of the experimental conditions.
Figure 8 compares the performance of the three agents. We
also compare them to a naturally acting human by including
the results of two naturally acting humans from the human-
human study. The total task completion time was the longest
for the Defensive robot while the other three agents were
similar but significantly faster supporting hypothesisH2. The
Defensive robot also had the longest robot task execution
time but also led to the shortest time for the human. Bayes–
Nash was the least safe and Natural the most, the selfish
and defensive conditions had similarly small safety stops,
contrary to hypothesis H1.

9.4 Analysis

It took the Defensive agent 36.2% more time to complete
the entire task than the Selfish agent. These results confirm
that the Defensive agent acts in an overly cautious manner.
When comparing with the naturally-acting human we also
noticed that the task completion time for the Bayes–Nash
approach performs almost equally well. However, the safety
stops results are surprising in two respects: (1) the higher
number of safety stops for Bayes–Nash as compared to Nat-
ural and other conditions, (2) the much fewer safety stops for
all conditions when compared to the simulated human study.
We also noticed the latter in the human-human study, indicat-
ing that people are better at avoiding collisions as compared
to the robots. We explore potential causes for these findings
in the next section.

10 Discussion, limitations and future work

Figure 6 shows that the Bayes–Nash approach and the
naturally-acting human are similar in their ability to adapt
effectively to different personalities. However, in the human-
robot study, Bayes–Nash had the most safety stops which
contradicts H1. We believe there are two potential explana-
tions.

First, due to human learning effects. Figure 9 shows that
the number of safety stops decrease with more trials for
both the Defensive and Selfish-Nash conditions. This indi-
cates that the user might have learned a collision-avoidant
response to those agents over time. As for the Bayes–Nash
condition, the safety stops first increase over trials and then
remain constant. This might be because those two strategies
had a somewhat fixed behavior that the human could easily
adapt to. For example, if the robot moves to the goal without
consideration of the human’s presence every time, the human
will learn that her optimal response is to wait for the robot
initially. This is similar to the observation from Sadigh et al.
(2016a) where the robot directly influenced human behavior.
Although this led to better performance, in our scenario, it
is questionable whether this fixed behavior will be desirable
from a robot collaborator in the real-world. Second, due to
themismatch in human-robot speed. Although themaximum
arm velocities were the same for both agents, the robot was
able to act faster than the human. In the Selfish condition,
after a couple of trials, people might have realized that it
was easier to complete the task by waiting for the robot. We
need further experiments that control for these variables to
confirm these and plan for it in future work. Also, our frame-
work could use knowledge from previous interactions with
the same agent to improve the interaction, e.g., by using a
prior on the α inferred from the previous trial.
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Fig. 9 Effect of experience in the Human-Robot study. It shows the
cumulative safety stops for the robot averaged over the trials. For the
Defensive and Selfish-Nash conditions, the number of stops decreases
with more trials, indicating that the human learns to avoid collision.
However, forBayes–Nash, the safety stopsfirst increase and then remain
constant, perhaps due to the difficulty in adapting to an agent whose
behavior is not fixed

Although our approach can generalize to more agents, it
was specifically designed for addressing scenarios involving
human-robot cohabitation where usually only two agents are
present (Nikolaidis et al. 2015; Gabler et al. 2017). The time
complexity of our algorithm is exponential in the number of
agents, so can become intractable for large numbers of them.
However, this may not be a limitation in real-world scenar-
ios, since, even in cases where many agents are present (e.g.,
driving on a highway), we only need to consider the interac-
tive influence of a few close-by cars to generate human-like
behavior (Schwarting et al. 2019). In the future we would
like to test it in the presence of more agents.

The action planning in our approach utilizes an RRT plan-
ner to compute high-level trajectories for the pick-and-place
task. This allows us to efficiently compute all of the pureNash
equilibrium strategies present. However, since the planner is
ignorant of the presence of the other agents, the variations in
the sampled trajectories are random and not adapted to the
goals of the other agents which canmake the interactions less
efficient. This can be improved in the current framework by
conditioning new plan samples on previously sampled plans
of the other agent.

The primary contribution of our work is in developing a
novel game-theoretic approach for HRI tasks. We also insti-
tuted a pilot study to validate this methodology and present
descriptive statistics of the results.However, the small sample
size did not allow us to run significance tests for the human
experiments. Our plans for future work include a larger HRI
study to provide evidence for generalization to a broad pop-
ulation.
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