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Abstract: Coordinating with humans is a challenge for AI agents, even when
there are common goals because of both the heterogeneity of human behavior and
an assumption of optimal decision-making. Given a large corpus of human-human
interactions, we can train models to learn the best responses; however, even with-
out such data, we can still use our knowledge of biases and limitations in humans
to construct a technique that can coordinate with humans. In this paper, we present
a game-theoretic method that incorporates different partner behavior in the form
of different reinforcement learning models trained with suboptimal partners. We
also show how to augment this approach with human data. We perform exper-
iments in the fully-cooperative game Overcooked [1]. Our results show a 40%
improvement over the baseline of a self-play agent and a 5% improvement over
the baseline when using the data of human-human interactions.

1 Introduction

Multi-agent interactions are common in everyday life. As artificial agents share more of our social
spaces they must be able to manage these interactions well. Even though past work in multi-agent
systems focuses on competitive games, most of our interactions do not. Recent work has shown that
cooperation has its own unique challenges and progress in competition does not always transfer [1].

We make two key observations: (1) human decision-making is not optimal, so assuming such can
lead to a breakdown in coordination, and (2) human behavior is not homogeneous so the AI agent
must be able to adapt to the the behavior of a specific agent to interact effectively. Prior work,
e.g. Population Based Training (PBT) [2], has attempted to induce diverse behaviors by training
with multiple models, but uniformly training over diverse policies may not capture human behavior
and these models can converge to a single policy due to catastrophic forgetting. While others,
e.g. [1], have shown how to utilize human data for interaction, it does not address the wide variety
of applications where human data is unavailable due to costs or safety concerns.

Our main contribution then is to model interaction as a two-agent Bayesian game where the AI
agent adapts to its partner by considering a small set of policies. We create different behaviors by
training RL agents with intentionally slower partners to capture a human’s suboptimality. We model
the different policies as discrete states of a Hidden Markov Model(HMM) which is updated using
observations of the human’s behavior. The inferred agent type is used to sample action trajectories
to create a normal-form game that is solved to find the actions to execute for the agent.

Using the fully-cooperative game of Overcooked [1], we first pair the AI agent with an agent trained
by self-play, and then pair the AI agent with a proxy model of a human trained by imitation learning.
Our approach is able to significantly outperform the baseline in case human data is unavailable when
paired with the proxy human model. Also, the performance of our approach and the baseline increase
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considerably when this data is made available. Next, we summarize relevant prior work (Section 2),
formalize the problem and describe our solution (Section 3), present results (Section 4) and conclude
with plans for future work (Section 5).

2 Related Work

There has been considerable progress in solving zero-sum games such as Backgammon [3], Go [4],
Dota 2 [5], and StarCraft II [6]. Curriculum learning strategies, such as self-play and league-play,
are often used to guide training [7]. In self-play, a primary agent plays against recent versions of
itself. In league-play, the primary agent plays against a diverse set of continually adapting strategies.

Unfortunately, these methodologies don’t transfer well to cooperative games, as shown by [1],
especially when one of the decision-making agents is a human, for a number of reasons. First,
equilibria in two-player zero-sum games are minimax/maximin strategies suitable for self-play, but
that is not the case for cooperative or general-sum games [8]. In addition, when paired with a humans
only during test time, agents trained through self-play experience out-of-distribution input data [9].

Transfer learning is a possible solution, and several methods have been proposed in recent
years [10, 11, 12, 13]. In our case, we deal with a specific form of transfer learning referred to
as zero-shot domain adaptation, in which agents do not have access to the target domain for training,
thus zero-shot learning [14]. In addition to novel training methodologies, several deep multi-agent
algorithms have been introduced in recent years. This includes methods that exploit neural network
architectures and standard RL agent components [15, 16], agents that use communication mecha-
nisms [17, 18], and methods that have an awareness of other learning agents [19, 20, 21]. However,
there is space for more progress in developing agents that can adapt to human partners.

Recently, game theory has received interest in enabling coordination in general-sum multiagent sce-
narios [22, 23, 24, 25, 26]. The Nash equilibrium has been used to plan effectively among different
agents [22, 27, 24, 28]. Others have adapted to the heterogeneity in human behavior by inferring
personality [22], social compliance [24] and strategy preference [28]. We also model the human
agent’s adherence to different behavior types derived from different levels of task competence.

3 Method

We model multi-agent interaction as a Bayesian game represented as a tuple (N,S,A, θ, p, r) [29].
Here, N is a set of agents, S is a set of states, A = A1 × ... × AN where Ai is the set of discrete
actions available to player i, θ = θ1× ...× θn where θi is the type space for agent i, p is a prior over
these types, p(θi) ≥ 0,

∑
p(θi) = 1 , and r = (r1, ..., rn) where ri : S 7→ R is the reward for agent

i. p ∈ ∆(θ)

In our scenario, each action profile a ∈ A is a sequence of control inputs for all the agents generated
by sampling a policy p(c|s) = f(s) where c, s refer to control input and state, respectively. The
agents are modeled as having multiple types θ, each of which has an associated policy for both
agents. The policies here are neural networks trained via RL or imitation learning.

3.1 Bayes-Nash

Figure 1 shows our framework. At a timestep, t, the type θ with the maximum probability is used to
select the policy models for both agents. We sample the policies from state st to generate action sets
of size k, |Ai| = k. Next, we compute the accumulated reward for every pair of the k × k actions
by simulating them. We then represent this as a normal form game for a given type and find the
corresponding Nash equilibria. A set of actions is a Nash Equilibrium, if no agent has incentive to
choose a different action for themselves given that all the other agent’s actions are fixed [29]. If more
than one equilibrium is present, we select one uniformly at random from the set of Pareto-optimal
equilibria and execute the corresponding action for the robot.
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Figure 1: Bayes-Nash. Our model has two types, θ, corresponding to RL models for the robot and
the human. We sample trajectories for a type and use them to construct a normal-form game. We
select the robot’s actions based on the Nash equilibria. We observe the human’s action to update the
belief of the Hidden Markov Model over human types and repeat this cycle.

The type-space of the agents is modeled by a Hidden Markov Model (HMM) with a discrete latent
state that corresponds to the different policy models. The state is assumed to be full-observable and
the HMM is updated at every timestep with the evidence being composed of past human states.

3.2 RL Agents

No human data. In the absence of human interaction data, we train two kinds of policies using
Proximal Policy Optimization (PPO) [30]. The first uses self-play, referred to as PPOSP , where the
agent learns to play the game by interacting with a copy of itself. The second, PPOnoop, is trained by
partnering with a model that samples its control from PPOSP with a probability (1 − p), and takes
a noop action otherwise. This model was designed to capture the agent’s response to suboptimal
behavior. We trained four such models, with p = {0, 0.25, 0.5, 0.75, 1}.

Using human data. We utilize disjoint human-human interaction data to train two behavioral
cloning models, BC, and HProxy(refer to [1] for more details). We train an RL model, PPOBC ,
by interacting with BC. HProxy was used only for testing the performance of these models.

4 Experiments

We use the Overcooked environment introduced by [1] because it includes both strategy and motion
coordination challenges while the action space works well with deep RL algorithms. In this environ-
ment, two agents work together to cook and serve soup, with the goal being to serve as many soups
as possible. We use the first layout from [1] where the agents need to put 3 onions in a pot, leave
them to cook for 20 timesteps, place this soup in a dish, and serve it. The challenge comes from
the agents learning to navigate the map and interact with objects while adapting to their partner’s
strategy. There are 6 available actions - up, down, right, left, noop, and interact. In the game, an
action profile a is a fixed-length trajectory of these discrete actions. We sample k = 4 trajectories
for each agent which leads to a 4 × 4 normal-form game. Rewards for the agent are accumulated
over the whole trajectory. Both agents receive a joint team-reward of 20 for each dish served by
either of the agents. Each agent also receives a smaller individual reward based on performing use-
ful intermediate actions like delivering an onion or putting the soup in a dish. We use this shaping
reward for the normal-form game as well as the RL training but it is decayed to 0 during the RL
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Figure 2: Rewards over episodes of 400 timesteps paired with (a) a self-play model and (b) a human
proxy model, with standard error across 5 random seeds.

training. If we do not find a Nash equilibrium at a given timestep we randomly select a trajectory
to execute, this happens very rarely in our domain(< 0.1%). We used the same experimental setup
as [1] including the random seeds.

4.1 Results

We include three different types of agents: PPO, PPOnoop, and Bayes-Nash. If human data is
unavailable, PPO refers to PPOSP and Bayes-Nash includes two types- PPOSP and PPOnoop

p=0.75.
If human data is available, PPO refers to PPOBC and Bayes-Nash includes two types- PPOBC

and PPOnoop
p=0.75. The parameters of the HMM in Bayes-Nash are kept constant under both

conditions. We measure the accumulated joint team-reward over episodes of 400 timesteps.

Experiment 1. PPOSP acts as the human and we compare team performance across the different
models. As shown in Figure 2a, when the agents were trained without human data, Bayes-Nash agent
performed slightly better than the PPOSP agent, and considerably better than the PPOnoop agent.
Here, we did not observe considerable improvements when training the agents with human data.

Experiment 2. The HProxy model acts as the human and we compare team performance. As shown
in Figure 2b, when agents were trained without human data, Bayes-Nash outperformed both the
PPOSP and PPOnoop by over 40%. The Bayes-Nash agent was able to adapt to the human model
while only choosing between the behaviors of the other two models without access to any human
data. We believe this is due to its ability to switch to PPOnoop when the stubbornness of PPOSP

causes deadlocks as humans deviate from its expectations. In our experiments, Bayes-Nash mostly
relies on PPOSP and rarely uses PPOnoop. When we include access to human data through PPOBC ,
both models improve their coordination considerably, highlighting the importance of human data for
enabling coordination. Bayes-Nash performs only slightly better than the baseline PPOBC with the
addition of this data.

5 Conclusion

We present a method for interactive decision-making that uses multiple RL agents in a game-
theoretic framework and infers a distribution over these models based on the history of its inter-
action. We also showed how to increase behavior diversity in RL agents by making their partner
intentionally slow during training. While recent work has shown us how to incorporate human in-
teraction data to achieve coordination with human partners through imitation learning, it fails to
address applications where collecting a large amount of data from humans is infeasible. Our results
show that incorporating knowledge of game theory and human capability can help us to develop
agents that coordinate well with people even when human data in unavailable. As a next step, we
plan to study mechanisms that allow us to iteratively improve these models with few human interac-
tions. Also, to test generalizability, our plan is to perform a user-study where these algorithms can
interact with humans as well as investigating the adaptibility of these ideas to other domains.
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Q. Fischer, S. Hashme, C. Hesse, R. Józefowicz, S. Gray, C. Olsson, J. Pachocki, M. Petrov,
H. P. d. O. Pinto, J. Raiman, T. Salimans, J. Schlatter, J. Schneider, S. Sidor, I. Sutskever,
J. Tang, F. Wolski, and S. Zhang. Dota 2 with large scale deep reinforcement learning, 2019.

[6] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi,
R. Powell, T. Ewalds, P. Georgiev, J. Oh, D. Horgan, M. Kroiss, I. Danihelka, A. Huang,
L. Sifre, T. Cai, J. P. Agapiou, M. Jaderberg, A. S. Vezhnevets, R. Leblond, T. Pohlen,
V. Dalibard, D. Budden, Y. Sulsky, J. Molloy, T. L. Paine, C. Gulcehre, Z. Wang, T. Pfaff,
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