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Abstract— Autonomously performed lane merging as collab-
orative planning in a scenario with human drivers. Showed
that planning to co-operate with the human significantly out-
performs maximizing selfish reward in this domain.

I. INTRODUCTION

Merging into another lane is easy in isolation, however,
traffic density and road design make the situation complex.
For example, in Figure 1a there is only half a mile between
the entry and the exit. This creates a scenario where cars
exiting and entering have to negotiate with each other to
safely navigate this lane merge in the time available. Humans
do so by inferring intentions, driving styles, etc. of those
around them and conditioning their behavior on that. This
is in contrast to scenarios like lane-following or intersection
navigation where one could get away with treating other cars
like obstacles to avoid instead of agents to interact with.

Prior work in autonomous driving disregards the complex-
ity of these agents, assuming them to be constant velocity
obstacles, or controlled by simple rules. We take inspiration
from recent work by Sadigh et al. [1] which grants agency to
the other (human) driver and take into account their goals and
actions. However, their self-interested AV only maximizes
it’s own reward, they assume also that the AV is able to
choose its actions first. This works well in scenarios where
the aims AV to influence the human’s actions like making
them slow down by moving in front of them but can be
uncomfortable or unsafe in real-world situations. On the
other hand, it is not uncommon for human drivers to slow
down and let others into their lane. Behavioral economics
also supports the argument that people are influenced by
notions of fairness and reciprocity when making decisions,
even at the expense of their own self-interest.

Our goal is to successfully navigate the Double Lane
merging scenario autonomously in the presence of human
drivers. Here, two cars start in adjacent lanes and must merge
into each others’ lanes in a limited road length (Figure 1b).
Our hypothesis is that an AV which considers the goals of
other agents in addition to it’s own selfish reward should
benefit the human driver without adversely affecting itself.

We simulated Double Lane merging and measured the
performance of the AV with different levels of cooperation
in the presence of people. Our analysis shows that having a
more balanced reward, when planning for the AV, leads to
better human performance. We also found that it positively
affected the AV’s performance as well.
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(a) Challenging Highway (b) Problem Setup

(c) User controls the human car.

Fig. 1: (a) Highway in San Diego where the entry and exit
are only 0.5 mile apart. (b) Double Lane Merge Scenario:
where two cars start side-by-side with and have to merge
into each other’s lanes on a road of limited length.

II. PROBLEM

The goal is for the autonomous agent to safely move to
it’s target lane as quickly as possible in the presence of a
human driver. We use the scenario of Figure 1b where either
car changing lanes independent of the other can lead to a
collision. So the challenge here is to take actions based upon
the predicted behavior of the other car.

Our world is a fully-observed dynamical system where
the state x contains the position and speed of both cars.
The state at the next time-step of the system is determined
by applying the control for both human (uH ) and robot
(uR) according to the deterministic function T , xt+1 =
T (xt, uR(t), uH(t)). Each agent has five available actions
that get applied instantly. (1) accelerate action increases
the speed, while (2) decelerate decreases it by a constant
factor, (3) stay maintains it, (4) turn-left, and (5) turn-right
introduce a positive, and negative lateral component to the
velocity while maintaining the speed.



III. APPROACH

The goal of our robot car is to maximize a given reward
RR(x) over the fixed length of time N . So the optimal set
of actions u∗

R from the current state x0 will be given by,
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However, u

(t)
H are the future actions of the human and

so are not known. So the optimal robot actions can not be
computed without predicting the human’s actions. To do this,
we assume that the human acts rationally to attain their goal.
Due to the non zero-sum nature of this multi-agent game, as
well as the dependence of each agent’s reward on the other
agent’s actions, we will approach this as a collaboration. In
it, to determine the optimal set of actions for the robot u∗

R

we will maximize the joint reward RJ = αRR+(1−α)RH .
with respect to the joint action space (u∗

R, u
∗
H). α here is the

co-operation factor which determines the relative importance
of each reward in the collaboration. For example, α = 1 is
an aggressive robot with no consideration for the human and
α = 0 is the reverse, while α = 0.5 equally considers the
goal of both agents. We do not assume apriori knowledge of
α and plan to study its effect with the user study.

We implement this optimization as a limited depth (6
seconds) search using a simple heuristic to speed it up. We
execute the first action for the robot from the optimal plan
and repeat the search after every human action at every time-
step. The robot rewards are positive for reaching the goal and
negative for collisions.
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Fig. 2: Results from the user study.

IV. EXPERIMENTS AND ANALYSIS

We used the SUMO simulator [2] and the in-built vi-
sualizer to render the cars, the simulation time-step is 0.2
seconds. Our user-study involved 20 participants each per-
forming 18 trials. They were instructed to safely drive the
car to the goal lane with an AV that communicated its goal
with blinkers. The cooperation factor (α) and road lengths
were randomly sampled from {0.0, 0.2, 0.4, 0.6, 0.8, 1.0},
and{100, 200}m respectively. We studied the effect of α,
having around 50 trials for each, in Figure 2.

Figure 2a shows the average time it takes for a car to merge
into it’s goal lane for each α. Lower is better here and the
minima is near the middle and is high at either end, implying
the higher effectiveness of the Fair AV (FAV) with α = 0.6.
We compared the FAV to the Selfish AV (SAV) with α = 1.0
using an unpaired one-sided t-test and found that the merge-
time was significantly lower for both the human (p < 0.05)
and the AV (p < 0.05) in the case of the fairer vehicle. The
SAV is equivalent to the agent proposed by Sadigh et al. [1]
for our scenario. Since the FAV is more considerate towards
the human’s goal it improves the humans’ ability to reach the
goal. However, the FAV fairs better even for the robot, we
attribute this to its possession of a more accurate model of
the user’s behavior. During planning, the SAV assumes that
the human actively plans for the AV’s goal and not her own.
However, this is false and probably leads to it modifying its
plan often.In Figure 2a, we also observe that the human is
slower at lane merging. This can be explained by the fact
that the robot’s reward favors the fastest lane merge plan but
the human has only wishes to merge before the road ends
and is not incentivized to do it as soon as possible.

When calculating the average times above we only con-
sidered the successful trials, i.e. trials where the car was able
to successfully merge into it’s goal lane before the end of
the road was reached. In Figure 2b we plot the Failure Rate,
which is the ratio of unsuccessful trials to the total trials for
each alpha. Again, we found that the FAV outperformed all
others, including the SAV, which means that both human and
robot were able to reach their goal lanes more often when
the AV had a fair reward function.

V. CONCLUSION

We formulated a planning framework with different co-
operation levels and used it to control an autonomous car
interacting with a human in simulation. We observed that
in this mixed-autonomy set-up collaboration outperformed
selfishness. In the future we would like to study this effect
in other human-robot interaction domains.
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